Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của AC và BD, AC = 2a, BD = 2b; tam giác SBD là tam giác đều. Gọi I là điểm nằm trên đoạn thẳng AC sao cho AI = x (0 < x < a), (P) là mặt phẳng đi qua điểm I và song song với mặt phẳng (SBD).
a) Xác định giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Trong mặt phẳng (ABCD), kẻ MN đi qua I và MN // BD (M ∈ AB, N ∈ AD).
Trong mặt phẳng (SAD), kẻ NJ // SD (J ∈ SA).
Trong mặt phẳng (SAB), nối JM.
Ta có MN // BD và BD ⊂ (SBD) nên MN // (SBD). Do đó mặt phẳng (P) chính là mặt phẳng (MNJ)
Khi đó, (P) ∩ (SAB) = JM; (P) ∩ (SAD) = JN; (P) ∩ (ABCD) = MN.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |