Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:
a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);
b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tam giác AMN, ta có: AE = \(\frac{2}{3}\)AM, AF = \(\frac{2}{3}\)AN (E, F là trọng tâm tam giác ABC, ABD).
Theo định lí Thales đảo suy EF // MN và EF = \(\frac{2}{3}\)MN.
Vì \(\overrightarrow {EF} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \).
b) Xét tam giác BCD, có M, N là trung điểm CB, DB nên MN là đường trung bình của tam giác.
Ta có: MN // CD và MN = \(\frac{1}{2}\)CD.
\(\overrightarrow {CD} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {MN} = \frac{1}{2}\overrightarrow {CD} \).
Do đó, \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} = \frac{2}{3}.\frac{1}{2}\overrightarrow {CD} = \frac{1}{3}\overrightarrow {CD} \).
Vậy \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |