Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP và NQ. Chứng minh rằng \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì MN là đường trung bình của tam giác ABC nên MN // AC và MN = \(\frac{1}{2}\)AC.
Vì PQ là đường trung bình của tam giác ADC nên NP // AC và NP = \(\frac{1}{2}\)AC.
Do dó, MN // AC và MNPQ là hình bình hành.
Theo đề bài, G là giao điểm của MNPQ là hình bình hành và G là giao điểm MP và NQ nên G là trung điểm của mỗi đoạn thẳng đó.
Ta có: \(\left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {GC} + \overrightarrow {GD} } \right)\) = \(2\overrightarrow {GM} + 2\overrightarrow {GP} \) = 2\(\left( {\overrightarrow {GM} + \overrightarrow {GP} } \right)\) = 2.\(\overrightarrow 0 \) = \(\overrightarrow 0 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |