Giá trị của tham số m để hàm số y = \(\frac{1}{3}\)x3 – mx2 + 4x – 2023 đạt cực trị tại x = −2 là
A. Không tồn tại m.
B. m = −2.
C. m = 2.
D. m = 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: A
Tập xác định: D = ℝ.
Ta có: y' = x2 – 2mx + 4.
Để hàm số đạt cực đại tại x = −2 thì y'(−2) = 0 hay (−2)2 − 2m(−2) + 4 = 0 ⇔ m = 2.
Thử lại với m = 2, ta có y' = x2 – 2x + 4 = (x – 2)2 ≥ 0, ∀x ∈ ℝ.
Do đó, với m = 2 hàm số đồng biến trên ℝ, nên không có cực trị.
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |