Một hình chóp tứ giác đều ngoại tiếp hình cầu bán kính R.
a) Chứng minh rằng thể tích của khối chóp tương ứng và V = \(\frac{{4{R^2}{x^2}}}{{3\left( {x - 2R} \right)}}\), trong đó x là chiều cao của hình chóp.
b) Với giá trị nào của x để khối chóp tương ứng có thể tích nhỏ nhất?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Xét tam giác vuông SHN, ta có: HN = SH.cotα = xcotα.
MN = 2HN = 2xcotα.
Thể tích khối chóp là V = \(\frac{1}{3}M{N^2}.SH = \frac{4}{3}{x^3}{\cot ^2}\alpha .\)
Xét tam giác SHN có \(\widehat {HSN}\) = 90° − α.
Trong tam giác IPH vuông tại P, có SI = \(\frac{{\sin \left( {90^\circ - \alpha } \right)}} = \frac{R}{{\cos \alpha }}\).
Ta có: SH = HI + IS = R + \(\frac{R}{{\cos \alpha }}\)
⇒ cosα = \(\frac{R}\). Suy ra sin2α = 1 – cos2α = 1 − \(\frac{{{R^2}}}{{{{\left( {x - R} \right)}^2}}}\) = \(\frac{{{x^2} - 2Rx}}{{{{\left( {x - R} \right)}^2}}}\);
cot2α = \(\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{R^2}}}{{x\left( {x - 2R} \right)}}\).
Từ đó ta được V = \(\frac{{4{R^2}{x^2}}}{{3\left( {x - 2R} \right)}}\).
b) Xét hàm số f(x) = \(\frac{{4{R^2}{x^2}}}{{3\left( {x - 2R} \right)}}\) với x > 2R.
Ta có: f'(x) = \(\frac{{12{R^2}{x^2} - 48{R^3}x}}{{9{{\left( {x - 2R} \right)}^2}}} = \frac{{12{R^2}x\left( {x - 4R} \right)}}{{9{{\left( {x - 2R} \right)}^2}}}\);
f'(x) = 0 ⇔ \(\frac{{12{R^2}x\left( {x - 4R} \right)}}{{9{{\left( {x - 2R} \right)}^2}}}\) = 0 ⇔ x = 4R.
Ta có bảng biến thiên:
Vậy \(\mathop {\min }\limits_{x > 2R} V = \frac{3}{R^3}\) khi x = 4R.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |