Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M. a) Chứng minh: ∆AMB = ∆AMC. b) Chứng minh M là trung điểm của cạnh BC. c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

1 Xem trả lời
Hỏi chi tiết
11
0
0
Phạm Minh Trí
12/09 17:51:42

a) Xét ∆AMB và ∆AMC có:

AB = AC (giả thiết)

\(\widehat {BAM} = \widehat {CAM}\) (MA là tia phân giác của \(\widehat {BAC}\))

AM: cạnh chung

Þ ∆AMB = ∆AMC (c.g.c)

b) Vì ∆AMB = ∆AMC (cmt)

Þ BM = CM (Hai cạnh tương ứng)

Suy ra M là trung điểm của BC (đpcm)

c) Xét ∆ABC cân tại A có: AM là tia phân giác trong ∆ABC nên suy ra AM đồng thời là đường trung trực của tam giác ABC

Ta có: \(\left\{ \begin{array}{l}IK \bot BC\\AM \bot BC\end{array} \right.\)

Þ IK // AM (quan hệ vuông góc và song song)

Nên có: \(\widehat {BIH} = \widehat {BAM}\) (hai góc ở vị trí đồng vị)

Thấy \(\widehat {BAC} = 2\widehat {BAM}\) (do AM là tia phân giác của góc \(\widehat {BAC}\))

Do đó: \(\widehat {BAC} = 2\widehat {BIH}\) (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×