Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0;\)
b) 3x2 – 9x + 3 = 0;
c) 11x2 – 13x + 5 = 0;
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: \(\Delta ' = {\left( { - \sqrt 5 } \right)^2} - 1.1 = 4 > 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt:
\({x_1} = \sqrt 5 + 2,\) \({x_2} = \sqrt 5 - 2.\)
b) Ta có: \(\Delta = {\left( { - 9} \right)^2} - 4.3.3 = 45 > 0,\) \(\sqrt \Delta = 3\sqrt 5 .\)
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{6} = \frac{2},\) \({x_2} = \frac{6} = \frac{2}.\)
c) Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.11.5 = - 51 < 0.\)
Do đó, phương trình vô nghiệm.
d) Ta có: \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có nghiệm kép:
\({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}.\)Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |