Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2+bx+c=ax−x1x−x2.
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) x2 + 11x + 18;
b) 3x2 + 5x – 2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Với x1 và x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0, theo định lí Viète ta có: \({x_1} + {x_2} = - \frac{b}{a};\) \({x_1}{x_2} = \frac{c}{a}.\)
Do đó \[a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a{x^2} - a\left( {{x_1} + {x_2}} \right)x + a{x_1}{x_2}\]
\( = a{x^2} - a.\left( { - \frac{b}{a}} \right).x + a.\frac{c}{a} = a{x^2} + bx + c.\)
Đó là điều phải chứng minh.
Áp dụng:
a) Do phương trình x2 + 11x + 18 = 0 có hai nghiệm x1 = −2, x2 = −9 nên
x2 + 11x + 18 = (x + 2)(x + 9).
b) Do phương trình 3x2 + 5x – 2 = 0 có hai nghiệm \({x_1} = \frac{1}{3},\) x2 = −2 nên
\(3{x^2} + 5x - 2 = 3\left( {x - \frac{1}{3}} \right)\left( {x + 2} \right) = \left( {x + 2} \right)\left( {3x - 1} \right).\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |