Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lục giác ABCDEF là lục giác đều nên AB = BC = CD = DE = EF = FA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAF} = \widehat {FAB}.\)
Ta cũng có tổng 6 góc của lục giác đều ABCDEF bằng tổng các góc của hai tứ giác ABCD và AFED, tức là bằng 2.360° = 720°.
Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAF} = \widehat {FAB} = \frac{{720^\circ }}{6} = 120^\circ .\)
Xét ∆AFB cân tại A (do AB = AF) ta có:
\(\widehat {ABF} = \widehat {AFB} = \frac{{180^\circ - \widehat {FAB}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ .\)
Hay \(\widehat {ABS} = \widehat {AFR} = 30^\circ .\)
Tương tự, đối với ∆ABC cân tại B ta có: \[\widehat {BAC} = \widehat {BCA} = 30^\circ \] hay \[\widehat {BAS} = 36^\circ .\]
Do đó ta có \[\widehat {ABS} = \widehat {BAS} = 30^\circ .\] Nên ∆ABS cân tại S.
Suy ra \(\widehat {ASB} = 180^\circ - 2\widehat {BAS} = 180^\circ - 2 \cdot 30^\circ = 120^\circ .\)
Khi đó, \(\widehat {RSM} = \widehat {ASB} = 120^\circ \) (đối đỉnh).
Chứng minh tương tự, ta được:
\[\widehat {RSM} = \widehat {SMN} = \widehat {MNP} = \widehat {NPQ} = \widehat {PQR} = \widehat {QRS} = 120^\circ .\,\,\,\,\;\left( 1 \right)\]
Ta có: \[\widehat {BSA} + \widehat {BSM} = 180^\circ \] (kề bù)
Suy ra \[\widehat {BSM} = 180^\circ - \widehat {BSA} = 180^\circ - 120^\circ = 60^\circ .\]
Ta cũng có: \(\widehat {BMS} = 180^\circ - \widehat {BMC} = 180^\circ - 120^\circ = 60^\circ .\)
Do đó ∆BSM là tam giác cân, lại có \(\widehat {BSM} = 60^\circ \) nên ∆BSM là tam giác đều.
Suy ra SB = SM = BM.
Chứng minh tương tự ta có ∆SAR là tam giác đều nên SA = SR = AR.
Do ∆ABS cân tại S nên SA = SB.
Khi đó, RS = SM.
Chứng minh tương tự, ta được:
RS = SM = MN = NP = PQ = QR. (2)
Từ (1) và (2) suy ra lục giác MNPQRS là lục giác đều.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |