Một món đồ chơi có dạng như Hình 26. Vỏ ngoài món đồ chơi là một hình nón (bằng nhựa trong suốt) có bán kính đường tròn đáy là \[3\sqrt 3 \] cm và đường sinh là \(6\sqrt 3 \;{\rm{cm}}.\) Trong hình nón là hai quả cầu (bằng thuỷ tinh) to và nhỏ, bán kính của chúng lần lượt là 3 cm và 1 cm. Tính tỉ số tổng thể tích của hai quả cầu và thể tích hình nón đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tổng thể tích của hai quả cầu là:
\(\frac{4}{3}\pi \cdot {1^3} + \frac{4}{3}\pi \cdot {3^3} = \frac{{112\pi }}{3}\) (cm3).
Ta có công thức tính độ dài đường sinh l qua chiều cao h và bán kính đáy r của hình nón là:
l2 = h2 + r2. Suy ra h2 = l2 – r2.
Khi đó, chiều cao của hình nón là:
\(\sqrt {{{\left( {6\sqrt 3 } \right)}^2} - {{\left( {3\sqrt 3 } \right)}^2}} = \sqrt {108 - 27} = \sqrt {81} = 9\) (cm).
Thể tích hình nón là:
\[\frac{1}{3} \cdot \pi \cdot {\left( {3\sqrt 3 } \right)^2} \cdot 9 = 81\pi \;\] (cm3).
Tỉ số tổng thể tích của hai quả cầu và thể tích hình nón là:
\(\frac{{112\pi }}{3}:\left( {81\pi } \right) = \frac{{112\pi }}{3} \cdot \frac{1}{{81\pi }} = \frac.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |