Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có 3 góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE. a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này.

Cho tam giác ABC có 3 góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE. a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này.
1 Xem trả lời
Hỏi chi tiết
8
0
0
Nguyễn Thị Sen
12/09/2024 21:02:29

a) Xét đường tròn (O) ta có:

BDC^ và BEC^ là hai góc nội tiếp chắn nửa đường tròn.

⇒BDC^=BEC^=90°.

Xét tứ giác ADHE có: BDC^+BEC^=90°+90°=180° mà hai góc này đối nhau nên tứ giác ADHE nội tiếp trong một đường tròn.

Ta có ΔADH và ΔAEH cùng nội tiếp đường tròn có đường kính AH.

Nên tứ giác ADHE nội tiếp trong một đường tròn tâm I, đường kính AH hay I là trung điểm của AH.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×