Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, \(CD = 2\sqrt 3 \;{\rm{cm}}.\) Tính:
a) Bán kính đường tròn (O).
b) Số đo \(\widehat {CAB}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có đường kính AB là trục đối xứng của đường tròn (O)
Suy ra \(MC = MD = \frac{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \;({\rm{cm}}).\)
Tam giác ABC có CO là đường trung tuyến và \(CO = \frac{1}{2}AB,\) suy ra ABC là tam giác vuông tại C.
Do \[\widehat {CAM} + \widehat {CBM} = 90^\circ ;\,\,\widehat {CAM} + \widehat {ACM} = 90^\circ \] nên \[\widehat {CBM} = \widehat {ACM}.\]
Xét ∆CMB và ∆AMC có:
\[\widehat {AMC} = \widehat {CMB} = 90^\circ \] và \[\widehat {CBM} = \widehat {ACM}\]
Do đó ∆CMB ᔕ ∆AMC (g.g).
Suy ra \(\frac = \frac,\) nên \(MB = \frac{{M{C^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{1} = 3\;({\rm{cm}}).\)
Gọi R là bán kính đường tròn đường kính AB, khi đó AB = 2R.
Ta có AB = MA + MB = 1 + 3 = 4 = 2R, suy ra R = 2 cm.
b) Xét tam giác AMC vuông tại M, ta có:
\(\tan \widehat {CAB} = \tan \widehat {CAM} = \frac = \frac{{\sqrt 3 }}{1} = \sqrt 3 ,\) suy ra \(\widehat {CAB} \approx 60^\circ .\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |