Cho biểu thức \(A = \frac{{3\sqrt x + 1}}{{\sqrt x + 3}}\left( {1 + \frac{1}{{\sqrt x + 2}}} \right) + \frac{9}{{\sqrt x + 2}},\) với \(x \ge 0.\)
1) Rút gọn biểu thức \(A.\)
2) Tìm tất cả các giá trị nguyên của \(x\) để biểu thức \(A\) nhận giá trị nguyên.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Với \(x \ge 0,\) ta có:
\(A = \frac{{3\sqrt x + 1}}{{\sqrt x + 3}}\left( {1 + \frac{1}{{\sqrt x + 2}}} \right) + \frac{9}{{\sqrt x + 2}}\)
\( = \frac{{3\sqrt x + 1}}{{\sqrt x + 3}} \cdot \frac{{\sqrt x + 3}}{{\sqrt x + 2}} + \frac{9}{{\sqrt x + 2}}\)
\( = \frac{{3\sqrt x + 1}}{{\sqrt x + 2}} + \frac{9}{{\sqrt x + 2}}\)\( = \frac{{3\sqrt x + 10}}{{\sqrt x + 2}}.\)
Vậy với \(x \ge 0\) thì \(A = \frac{{3\sqrt x + 10}}{{\sqrt x + 2}}.\)
2) Với \(x \ge 0,\) ta có: \(A = \frac{{3\sqrt x + 10}}{{\sqrt x + 2}} = \frac{{3\left( {\sqrt x + 2} \right) + 4}}{{\sqrt x + 2}} = 3 + \frac{4}{{\sqrt x + 2}}.\)
Vì \(x \in \mathbb{Z},\,\,x \ge 0\) nên \(\sqrt x \) là số tự nhiên hoặc là số vô tỉ.
Trường hợp 1. Xét \(x \in \mathbb{Z},\,\,x \ge 0\) nhưng \(\sqrt x \) là số vô tỉ.
Khi đó \(\sqrt x + 2\) là số vô tỉ nên \[\frac{4}{{\sqrt x + 2}}\] là số vô tỉ.
Do đó \(A = \frac{{3\sqrt x + 10}}{{\sqrt x + 2}} = 3 + \frac{4}{{\sqrt x + 2}}\) cũng là số vô tỉ (loại).
Trường hợp 2. Xét \(x \in \mathbb{Z},\,\,x \ge 0\) và \(\sqrt x \) là số tự nhiên.
Khi đó \(A \in \mathbb{Z}\) khi \(\left( {\sqrt x + 2} \right) \in \)Ư\[\left( 4 \right).\]
Mà Ư\[\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}\] và \(\sqrt x + 2 \ge 2\) nên \[\left( {\sqrt x + 2} \right) \in \left\{ {2;\,\,4} \right\}.\]
Ta có bảng sau:
\(\sqrt x + 2\) | \(2\) | \(4\) |
\(\sqrt x \) | \(0\) | \(2\) |
\(x\) \(\left( {x \in \mathbb{Z}} \right)\) | \(0\) (thỏa mãn) | \(4\) (thỏa mãn) |
Kết hợp điều kiện \(x \ge 0\) ta được \(x \in \left\{ {0;\,\,4} \right\}.\)
Vậy \(x \in \left\{ {0;4} \right\}\) thì \(A\) có giá trị nguyên.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |