Bài tập  /  Bài đang cần trả lời

Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\] 1) Chứng minh \[AEOF\] là tứ giác nội tiếp. 2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng. 3) Giả sử ...

Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]

1) Chứng minh \[AEOF\] là tứ giác nội tiếp.

2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.

3) Giả sử \[AB = 5\] cm, \[BC = 6\] cm. Tìm giá trị lớn nhất của diện tích tam giác \[AIK.\]
1 Xem trả lời
Hỏi chi tiết
11
0
0
Nguyễn Thu Hiền
12/09 21:33:03

Do đó \(\widehat {IOK} = \widehat {IOH} + \widehat {HOK} = \frac{1}{2}\left( {\widehat {EOH} + \widehat {HOF}} \right) = \frac{1}{2}\widehat {EOF}.\,\,\,\left( 1 \right)\)

Do \[AEOF\] là tứ giác nội tiếp nên \(\widehat {EAF} + \widehat {EOF} = 180^\circ ,\) suy ra \(\widehat {EAF} = 180^\circ  - \widehat {EOF}.\)

Mặt khác, \(\Delta ABC\) cân tại \(A\) nên \(\widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - \left( {180^\circ  - \widehat {EOF}} \right)}}{2} = \frac{1}{2}\widehat {EOF}.\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {ACB} = \widehat {IOK}.\]

Ta có: \(\widehat {IOK} + \widehat {IOB} + \widehat {KOC} = 180^\circ ;\)

 \(\widehat {ACB} + \widehat {CKO} + \widehat {KOC} = 180^\circ \)

Suy ra \[\widehat {IOB} = \widehat {CKO}.\] Kết hợp \(\widehat {OBI} = \widehat {OCK}\) ta chứng minh được  (g.g).

3) Vì \(O\) là trung điểm của \(BC\) nên \(OB = OC = \frac{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\)

Vì \(\Delta ABC\) cân tại \(A\) nên đường trung tuyến \(AO\) đồng thời là đường cao và đường phân giác của tam giác.

Xét \(\Delta ABO\) vuông tại \(O,\) ta có \(A{B^2} = A{O^2} + B{O^2}\) (định lí Pythagore)

Suy ra \(AO = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{5^2} - {3^2}}  = \sqrt {16}  = 4{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta OBE\) và \(\Delta ABO\) có: \(\widehat {ABO}\) là góc chung và \(\widehat {BEO} = \widehat {BOA} = 90^\circ .\)

Do đó  (g.g), suy ra \(\frac = \frac = \frac\)

Nên \(O{B^2} = AB \cdot BE\) và \(OE \cdot AB = OB \cdot OA.\)

Từ đó, ta có \(BE = \frac{{O{B^2}}} = \frac{{{3^2}}}{5} = 1,8{\rm{\;(cm)}}\) và \(OE = \frac = \frac{5} = 2,4{\rm{\;(cm)}}{\rm{.}}\)

Theo câu 2,  suy ra \(\frac = \frac\) hay \(KC \cdot BI = OB \cdot OC = O{B^2}.\)

Ta có: \({S_{AIK}} = {S_{ABC}} - {S_{BIKC}}\) nên \({S_{AIK}}\) lớn nhất khi \({S_{BIKC}}\) nhỏ nhất.

Gọi \(R\) là bán kính đường tròn \(\left( O \right).\) Khi đó \(R = OE = 2,4{\rm{\;cm}}.\)

Ta có: \({S_{BIKC}} = {S_{BOI}} + {S_{IOK}} + {S_{KOC}} = \frac{1}{2}\left( {OE \cdot BI + OH \cdot IK + OF \cdot KC} \right)\)

 \( = \frac{1}{2}R \cdot \left( {BI + IK + KC} \right)\)\( = \frac{1}{2}R\left( {BI + IH + HK + KC} \right)\)

 \( = \frac{1}{2}R\left( {BI + CK + IE + KF} \right)\)\( = \frac{1}{2}R\left( {2BI + 2CK - BE - CF} \right)\)

 \( = \frac{1}{2}R\left( {2BI + 2CK - 2BE} \right)\)\( = R\left( {BI + CK - BE} \right)\)

 \( \le R \cdot \left( {2\sqrt {BI \cdot CK}  - BE} \right) = R \cdot \left( {2\sqrt {O{B^2}}  - BE} \right) = R \cdot \left( {2OB - BE} \right)\)

\( = 2,4 \cdot \left( {2 \cdot 3 - 1,8} \right) = 10,08{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lại có \({S_{ABC}} = \frac{1}{2}AO \cdot BC = \frac{1}{2} \cdot 4 \cdot 6 = 12{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Do đó \({S_{AIK}} \le 12 - 10,08 = 1,92{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Dấu “=” xảy ra khi \[BI = CK\] hay \[AI = AK,\] tức là \(\Delta AIK\) cân tại \(A\) nên đường phân giác \(AO\) của tam giác này đồng thời là đường cao, tức \(AO \bot IK,\) mà \(OH \bot IK\) nên \(OH\) trùng \(OA,\) hay \(H\) là điểm chính giữa cung \[EF.\]

Vậy giá trị lớn nhất của diện tích tam giác \[AIK\] bằng \(1,92\) cm2 khi \(H\) là điểm chính giữa cung \[EF.\]

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×