LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh: a) Đường tròn đường kính AI đi qua K. b) HK là tiếp tuyến của đường tròn đường kính AI.

Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:

a) Đường tròn đường kính AI đi qua K.

b) HK là tiếp tuyến của đường tròn đường kính AI.

1 trả lời
Hỏi chi tiết
43
0
0
Đặng Bảo Trâm
13/09 10:29:43

Lời giải

a) Vì BK là đường cao của tam giác ABC nên \(\widehat {AKB} = 90^\circ \)

Suy ra tam giác AKI vuông tại K

Do đó K thuộc đường tròn đường kính AI

b) Gọi O là trung điểm của AI

Vì OA = OK nên tam giác OAK cân tại O

Suy ra \(\widehat {OAK} = \widehat {OK{\rm{A}}}\)

Vì tam giác BCK vuông ở K nên \(\widehat {KBC} + \widehat {KCB} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)

Vì tam giác ACH vuông ở H nên \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)

Suy ra \(\widehat {KBC} = \widehat {HAC}\)

Mà \(\widehat {OAK} = \widehat {OK{\rm{A}}}\) (chứng minh trên)

Suy ra \(\widehat {KBC} = \widehat {OK{\rm{A}}}\)                           (1)

Vì tam giác ABC cân tại A, AH là đường cao

Nên AH là đường trung tuyến

Hay H là trung điểm của BC

Xét tam giác BCK vuông ở K có KH là trung tuyến

Suy ra BH = HK

Do đó tam giác BHK cân tại H

Suy ra \(\widehat {BHK} = \widehat {BKH}\)                            (2)

Từ (1) và (2) suy ra \(\widehat {AKO} = \widehat {BKH}\)

Mà \(\widehat {AKO} + \widehat {OKB} = \widehat {AKB} = 90^\circ \)

Suy ra \(\widehat {BKO} + \widehat {BKH} = 90^\circ \)

Hay \(\widehat {HOK} = 90^\circ \)

Xét (O) có OH ⊥ HK

Suy ra HK là tiếp tuyến của (O)

Vậy HK là tiếp tuyến của đường tròn đường kính AI.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư