Cho biểu thức \(P = \left( {1 - \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x + 2}}{{\sqrt x + 3}} + \frac{{\sqrt x - 3}} + \frac{{\sqrt x - 2}}} \right)\).
a) Rút gọn P.
b) Tính giá trị của P biết \(x = \frac{2}\).
c) Tìm các giá trị x nguyên để P nhận giá trị nguyên.
d) Tìm x để P < 1.
e) Tìm các giá trị của x để \(P = \sqrt x - 3\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Điều kiện: x ≥ 0, x ≠ 4.
Ta có \(P = \left( {1 - \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x + 2}}{{\sqrt x + 3}} + \frac{{\sqrt x - 3}} + \frac{{\sqrt x - 2}}} \right)\)
b) Ta có \(x = \frac{2} = \frac{4} = {\left( {\frac{{\sqrt 5 - 1}}{2}} \right)^2}\) (thỏa mãn điều kiện)
Suy ra \(\sqrt x = \left| {\frac{{\sqrt 5 - 1}}{2}} \right| = \frac{{\sqrt 5 - 1}}{2}\)
c) Với x ≥ 0, x ≠ 4 ta có
Để P nguyên thì \(\frac{3}{{\sqrt x + 1}}\) nguyên
\( \Leftrightarrow \sqrt x + 1 \in U\left( 3 \right) = \left\{ {1;3; - 1; - 3} \right\}\)
\( \Leftrightarrow \sqrt x \in \left\{ {0;2; - 2; - 4} \right\}\)
\( \Leftrightarrow x \in \left\{ {0;4} \right\}\)
Kết hợp điều kiện x ≥ 0, x ≠ 4 ta có: x = 0.
Vậy x = 0.
d) Để P < 1 ⇔ \(\frac{{\sqrt x - 2}}{{\sqrt x + 1}} < 1\)
\( \Leftrightarrow \frac{{\sqrt x - 2}}{{\sqrt x + 1}} - 1 < 0\)
\( \Leftrightarrow \frac{{\sqrt x - 2 - \sqrt x - 1}}{{\sqrt x + 1}} < 0\)
\( \Leftrightarrow \frac{{ - 3}}{{\sqrt x + 1}} < 0\)
\( \Leftrightarrow \sqrt x + 1 > 0\) (luôn đúng)
Vậy P < 1 với mọi x ≥ 0, x ≠ 4.
e) Để \(P = \sqrt x - 3\) \( \Leftrightarrow \frac{{\sqrt x - 2}}{{\sqrt x + 1}} = \sqrt x - 3\)
\( \Leftrightarrow \left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right) = \sqrt x - 2\)
\( \Leftrightarrow x - 2\sqrt x - 3 = \sqrt x - 2\)
\( \Leftrightarrow x - 3\sqrt x - 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sqrt x = \frac{2}\\\sqrt x = \frac{2}\end{array} \right.\)
\( \Leftrightarrow \sqrt x = \frac{2}\) (vì \(\sqrt x > 0\))
\( \Leftrightarrow x = {\left( {\frac{2}} \right)^2} = \frac{2}\) (thỏa mãn)
Vậy \(x = \frac{2}\) thì \(P = \sqrt x - 3\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |