Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
\(y' = 4{x^3} + 3m{x^2} - 4x - 3m = \left( {x - 1} \right)\left[ {4{x^2} + \left( {4 + 3m} \right)x + 3m} \right]\)
\(y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{4{x^2} + \left( {4 + 3m} \right)x + 3m = 0\left( 2 \right)}\end{array}} \right.\)
Hàm số có 2 cực tiểu ⟺ y có 3 cực trị \( \Leftrightarrow y' = 0\) có 3 nghiệm phân biệt
⟺ (2) có 2 nghiệm phân biệt khác 1 \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta = {{\left( {3m - 4} \right)}^2} > 0}\\{4 + 4 + 3m + 3m \ne 0}\end{array}} \right. \Leftrightarrow m \ne \pm \frac{4}{3}\)
Giả sử: Với \(m \ne \pm \frac{4}{3} \Rightarrow y' = 0\) có 3 nghiệm phân biệt \({x_1},{x_2},{x_3}\)
Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu
Vậy hàm số có 2 cực tiểu khi \(m \ne \pm \frac{4}{3}\).
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\frac{{{x_1} + {x_2}}}{2} = - 2}\\{\frac{{{y_1} + {y_2}}}{2} = - \frac{{2\left( {{x_1} + {x_2}} \right) + 10}}{2} = 9}\end{array}} \right.\).
Tọa độ trung điểm cực đại và cực tiểu là (–2; 9) không thuộc đường thẳng \(y = \frac{1}{2}x \Rightarrow m = - 3\) (không thỏa mãn)
Vậy m = 1 thỏa mãn điều kiện đề bài.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |