LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn có \(\widehat A = 70^\circ \) và điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB. Gọi F là điểm đối xứng với D qua AC. Đường thẳng EF cách AB, AC theo thứ tự tại M, N. a) Tính các góc của tam giác AEF. b) Chứng minh rằng DA là tia phân giác của góc MDN. c) Tìm vị trí của D trên cạnh BC để tam giác DMN có chu vi nhỏ nhất.

Cho tam giác ABC nhọn có \(\widehat A = 70^\circ \) và điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB. Gọi F là điểm đối xứng với D qua AC. Đường thẳng EF cách AB, AC theo thứ tự tại M, N.

a) Tính các góc của tam giác AEF.

b) Chứng minh rằng DA là tia phân giác của góc MDN.

c) Tìm vị trí của D trên cạnh BC để tam giác DMN có chu vi nhỏ nhất.
1 trả lời
Hỏi chi tiết
8
0
0
Phạm Minh Trí
13/09 10:35:53

Lời giải

a) Vì E đối xứng D qua AB nên AB là trung trực của DE

Suy ra AE = AD

Do đó tam giác AED cân tại A

Mà AB là đường trung trực

Suy ra AB là phân giác của \(\widehat {DA{\rm{E}}}\)

Do đó \(\widehat {DAB} = \widehat {BA{\rm{E}}} = \frac{1}{2}\widehat {DA{\rm{E}}}\)

Vì F đối xứng D qua AC nên AC là trung trực của DF

Suy ra AF = AD

Do đó tam giác AFD cân tại A

Mà AC là đường trung trực

Suy ra AC là phân giác của \(\widehat {DAF}\)

Do đó \(\widehat {DAC} = \widehat {CAF} = \frac{1}{2}\widehat {DAF}\)

Ta có \(\widehat {F{\rm{AE}}} = \widehat {F{\rm{AD}}} + \widehat {DAE} = 2\widehat {CA{\rm{D}}} + 2\widehat {BAD} = 2\widehat {BAC} = 2.70^\circ = 140^\circ \)

Ta có AF = AE (= AD)

Suy ra tam giác AFE cân tại A, do đó \[\widehat {{\rm{AFE}}} = \widehat {{\rm{AEF}}}\]

Xét tam giác AEF có

\[\widehat {{\rm{AFE}}} + \widehat {{\rm{AEF}}} + \widehat {F{\rm{AE}}} = 180^\circ \] (tổng ba góc trong một tam giác)

Mà \[\widehat {{\rm{AFE}}} = \widehat {{\rm{AEF}}},\widehat {FA{\rm{E}}} = 140^\circ \] (chứng minh trên)

Suy ra \[\widehat {{\rm{AFE}}} = \widehat {{\rm{AEF}}} = \frac{{180^\circ - 140^\circ }}{2} = 20^\circ \]

b) Xét DAME và DAMD có

AM là cạnh chung;

\(\widehat {E{\rm{A}}M} = \widehat {DAM}\)(chứng minh trên);

AD = AE (chứng minh trên)

Do đó DAME = DAMD (c.g.c)

Suy ra \(\widehat {{\rm{AE}}M} = \widehat {ADM}\) (hai góc tương ứng)

Xét DANF và DAND có

AN là cạnh chung;

\(\widehat {{\rm{FAN}}} = \widehat {DAN}\)(chứng minh trên);

AD = AF (chứng minh trên)

Do đó DANF = DAND (c.g.c)

Suy ra \(\widehat {{\rm{AFN}}} = \widehat {ADN}\) (hai góc tương ứng)

Mà \(\widehat {{\rm{AE}}M} = \widehat {ADM}\), \[\widehat {{\rm{AFE}}} = \widehat {{\rm{AEF}}}\]

Suy ra \(\widehat {{\rm{ADM}}} = \widehat {ADN}\)

Do đó DA là tia phân giác của góc MDN.

c) Gọi giao điểm của DE và AB là P, giao điểm của DF và AC là Q

Khi đó P là trung điểm của DE, Q là trung điểm của DF

Xét tam giác DFE có P, Q lần lượt là trung điểm của DE, DF

Suy ra PQ là đường trung bình

Do đó PQ // FE và \(PQ = \frac{1}{2}F{\rm{E}}\)

Vì M thuộc trung trực của DE nên MD = ME

Vì N thuộc trung trực của DF nên ND = NF

Chu vì tam giác DMN là

DM + DN + MN = ME + NF + MN = FE

Để chu vi tam giác DMN nhỏ nhất

⇔ FE nhỏ nhất

⇔ PQ nhỏ nhất (vì \(PQ = \frac{1}{2}F{\rm{E}}\))

⇔ PQ // BC và \(PQ = \frac{1}{2}BC\)

⇔ PQ là đường trung bình của tam giác ABC

⇔ D là trung điểm của BC

Vậy D là trung điểm của BC thì chu vi tam giác DMN nhỏ nhất.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư