Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N. a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\). b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng. c) Cho BC = 2a. Tính tích BM.CN. d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.

a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Cho BC = 2a. Tính tích BM.CN.

d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

1 Xem trả lời
Hỏi chi tiết
36
0
0
Phạm Minh Trí
13/09 10:44:04

Lời giải

a) Đường tròn (O) có hai tiếp tuyến HM và ME cắt nhau tại M.

Suy ra OM là tia phân giác của \(\widehat {HME}\).

Do đó \(\widehat {HMO} = \widehat {OME} = \frac{1}{2}\widehat {HME} = \beta \).

Chứng minh tương tự, ta được \(\widehat {ONK} = \widehat {ONE} = \frac{1}{2}\widehat {ENK} = \gamma \).

Tứ giác BMNC, có: \(\widehat {CBM} + \widehat {BMN} + \widehat {MNC} + \widehat {NCB} = 360^\circ \).

\( \Leftrightarrow \alpha + 2\beta + 2\gamma + \alpha = 360^\circ \).

\( \Leftrightarrow 2\alpha + 2\beta + 2\gamma = 360^\circ \).

\( \Leftrightarrow \alpha + \beta + \gamma = 180^\circ \) (1)

∆MON, có: \(\widehat {MON} + \beta + \gamma = 180^\circ \)   (2)

Từ (1), (2), ta được \(\widehat {MON} = \alpha \).

b) Xét ∆BOM và ∆ONM, có:

\(\widehat {MBO} = \widehat {MON} = \alpha \);

\(\widehat {BMO} = \widehat {OMN} = \beta \).

Do đó  (g.g).

Chứng minh tương tự, ta được  (g.g).

Vậy OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng là ∆BOM, ∆ONM và ∆CON.

c) Ta có O là trung điểm của BC và BC = 2a.

Suy ra \(BO = CO = \frac{2} = \frac{2} = a\).

Ta có  (chứng minh trên).

Suy ra \(\frac = \frac\).

Do đó BM.CN = CO.BO = a.a = a2.

Vậy BM.CN = a2.

d) Áp dụng bất đẳng thức Cauchy, ta được \(BM + CN \ge 2\sqrt {BM.CN} = 2\sqrt {{a^2}} = 2a\).

Ta thấy a là một số không đổi.

Dấu “=” xảy ra ⇔ BM = CN = a.

Vì vậy tổng BM + CN nhỏ nhất khi và chỉ khi BM = CN = a.

Ta có tỉ số \(\frac = \frac\).

Áp dụng định lí Thales đảo, ta được: MN // BC.

Vậy khi tiếp tuyến MN của (O) song song với đường thẳng BC thì tổng BM + CN nhỏ nhất.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×