Tìm \[x,\,\,y,\,\,z \in \mathbb{N}\] thỏa mãn: \[\sqrt {x + 2\sqrt 3 } = \sqrt y + \sqrt z \].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Định hướng: Tổng quát dạng toán này là Giải phương trình nghiệm nguyên. Bài toán cho dưới dạng phương trình chứa ba ẩn, với điều kiện \[x,\,\,y,\,\,z \in \mathbb{N}\] thì các biểu thức trong căn luôn có nghĩa. Tổng quát có dạng \[\sqrt {f\left( {x,y,z} \right)} = \sqrt {g\left( {x,y,z} \right)} + \sqrt {h\left( {x,y,z} \right)} \] tư duy nhanh dạng phương trình vô tỉ cơ bản \[\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} + \sqrt {h\left( x \right)} \].
Giả sử \[\left( {x,y,z} \right) = \left( {a,b,c} \right),\,\,\left( {a,b,c \in N} \right)\] là một nghiệm của phương trình đã cho. Vì \[x,y,z \in \mathbb{N}\] nên vận dụng tính chất cơ bản của số học suy ra \[\sqrt y + \sqrt z \] có một trong hai dạng sau:
1. \[\sqrt y + \sqrt z = \sqrt b + \sqrt c \]. Điều này có nghĩa y, z không cùng là số chính phương.
2. \[\sqrt y + \sqrt z = p\,\,\left( {p \in N} \right)\]. Điều này có nghĩa y, z cùng là số chính phương.
Thay vào phương trình ta có: \[\sqrt {a + 2\sqrt 3 } = \sqrt b + \sqrt c \].
Bình phương hai vế thu được: \[a + 2\sqrt 3 = b + c + 2\sqrt {bc} \]
Vì \[a,b,c \in N\] nên suy ra:
\[\left\{ \begin{array}{l}a = b + c\\\sqrt 3 = \sqrt {bc} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b + c\\3 = bc\end{array} \right.\]
Từ đây chỉ ra b, c chính là hoán vị bộ số (1; 3).
Với sự xuất hiện hằng số \[2\sqrt 3 \] trong căn thức vế trái giúp liên tưởng tới biến x sao cho \[\sqrt {x + 2\sqrt 3 } = {\left( {a + m} \right)^2} = {a^2} + 2am + {m^2}\,\,\left( {a,\,\,m \in N} \right)\].
Để ý rằng \[2\sqrt 3 = 2.1.\sqrt 3 \] có dạng \[2am\left( {a,\,\,m \in N} \right)\], từ đó nhẩm nhanh đẳng thức tương ứng \[{a^2} + {m^2} = {1^2} + {\left( {\sqrt 3 } \right)^2}\].
Giải:
Ta có: \[\sqrt {x + 2\sqrt 3 } = \sqrt y + \sqrt z \Leftrightarrow x + 2\sqrt 3 = y + z + 2\sqrt {yz} \]
\[ \Leftrightarrow \left( {x - y - z} \right) + 2\sqrt 3 = 2\sqrt {yz} \Rightarrow {\left( {x - y - z} \right)^2} + 4\sqrt 3 \left( {x - y - z} \right) + 12 = 4yz\] (1)
TH1: Nếu \[x - y - z \ne 0\], ta có \[\sqrt 3 = \frac{{4\left( {x - y - z} \right)}}\] (2) (vô lý do \[x,y,z \in \mathbb{N}\] nên VP của (2) là số hữu tỉ).
TH2: Nếu \[x - y - z = 0\], ta có (1) \[ \Leftrightarrow \left\{ \begin{array}{l}x - y - z = 0\\yz = 3\end{array} \right.\] (3)
Giải (3) ra ta được \[\left\{ \begin{array}{l}x = 4\\y = 1\\z = 3\end{array} \right.\] (thỏa mãn) hoặc \[\left\{ \begin{array}{l}x = 4\\y = 3\\z = 1\end{array} \right.\] (thỏa mãn).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |