Bài tập  /  Bài đang cần trả lời

Tìm \[x,\,\,y,\,\,z \in \mathbb{N}\] thỏa mãn: \[\sqrt {x + 2\sqrt 3 } = \sqrt y + \sqrt z \].

Tìm \[x,\,\,y,\,\,z \in \mathbb{N}\] thỏa mãn: \[\sqrt {x + 2\sqrt 3 } = \sqrt y + \sqrt z \].

1 trả lời
Hỏi chi tiết
6
0
0
Trần Đan Phương
13/09 11:15:43

Định hướng:  Tổng quát dạng toán này là Giải phương trình nghiệm nguyên. Bài toán cho dưới dạng phương trình chứa ba ẩn, với điều kiện \[x,\,\,y,\,\,z \in \mathbb{N}\]  thì các biểu thức trong căn luôn có nghĩa. Tổng quát có dạng \[\sqrt {f\left( {x,y,z} \right)}  = \sqrt {g\left( {x,y,z} \right)}  + \sqrt {h\left( {x,y,z} \right)} \] tư duy nhanh dạng phương trình vô tỉ cơ bản \[\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)}  + \sqrt {h\left( x \right)} \].

Giả sử \[\left( {x,y,z} \right) = \left( {a,b,c} \right),\,\,\left( {a,b,c \in N} \right)\] là một nghiệm của phương trình đã cho. Vì \[x,y,z \in \mathbb{N}\] nên vận dụng tính chất cơ bản của số học suy ra \[\sqrt y  + \sqrt z \] có một trong hai dạng sau:

1. \[\sqrt y  + \sqrt z  = \sqrt b  + \sqrt c \]. Điều này có nghĩa y, z không cùng là số chính phương.

2. \[\sqrt y  + \sqrt z  = p\,\,\left( {p \in N} \right)\]. Điều này có nghĩa y, z cùng là số chính phương.

Thay vào phương trình ta có: \[\sqrt {a + 2\sqrt 3 }  = \sqrt b  + \sqrt c \].

Bình phương hai vế thu được: \[a + 2\sqrt 3  = b + c + 2\sqrt {bc} \]

Vì \[a,b,c \in N\] nên suy ra:

\[\left\{ \begin{array}{l}a = b + c\\\sqrt 3  = \sqrt {bc} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b + c\\3 = bc\end{array} \right.\]

Từ đây chỉ ra b, c chính là hoán vị bộ số (1; 3).

Với sự xuất hiện hằng số \[2\sqrt 3 \]  trong căn thức vế trái giúp liên tưởng tới biến x sao cho \[\sqrt {x + 2\sqrt 3 }  = {\left( {a + m} \right)^2} = {a^2} + 2am + {m^2}\,\,\left( {a,\,\,m \in N} \right)\].

Để ý rằng \[2\sqrt 3  = 2.1.\sqrt 3 \] có dạng \[2am\left( {a,\,\,m \in N} \right)\], từ đó nhẩm nhanh đẳng thức tương ứng \[{a^2} + {m^2} = {1^2} + {\left( {\sqrt 3 } \right)^2}\].

Giải:

Ta có: \[\sqrt {x + 2\sqrt 3 }  = \sqrt y  + \sqrt z  \Leftrightarrow x + 2\sqrt 3  = y + z + 2\sqrt {yz} \]

\[ \Leftrightarrow \left( {x - y - z} \right) + 2\sqrt 3  = 2\sqrt {yz}  \Rightarrow {\left( {x - y - z} \right)^2} + 4\sqrt 3 \left( {x - y - z} \right) + 12 = 4yz\] (1)

TH1: Nếu \[x - y - z \ne 0\], ta có \[\sqrt 3  = \frac{{4\left( {x - y - z} \right)}}\]      (2) (vô lý do \[x,y,z \in \mathbb{N}\] nên VP của (2) là số hữu tỉ).

TH2: Nếu \[x - y - z = 0\], ta có (1) \[ \Leftrightarrow \left\{ \begin{array}{l}x - y - z = 0\\yz = 3\end{array} \right.\] (3)

Giải (3) ra ta được \[\left\{ \begin{array}{l}x = 4\\y = 1\\z = 3\end{array} \right.\] (thỏa mãn) hoặc \[\left\{ \begin{array}{l}x = 4\\y = 3\\z = 1\end{array} \right.\] (thỏa mãn).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư