Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:
a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.
b) DE < BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Gọi O là trung điểm của BC
\( \Rightarrow OB = OC = \frac{1}{2}BC\) (1)
Xét tam giác DBC vuông tại D (do DB là đường cao của tam giác ABC)
Có DO là đường trung tuyến ứng với cạnh huyền BC
\( \Rightarrow OD = \frac{1}{2}BC\) (2) (tính chất đường trung tuyến ứng với cạnh huyền)
Từ (1) và (2) suy ra \(OB = OC = OD = \frac{1}{2}BC\).
Do đó, ba điểm B, C, D cùng nằm trên đường tròn tâm O bán kính OB.
Xét tam giác BEC vuông tại E (do CE là đường cao của tam giác ABC)
Có EO là đường trung tuyến ứng với cạnh huyền BC
\(OE = \frac{1}{2}BC\) (3) (tính chất đường trung tuyến ứng với cạnh huyền)
Từ (1) và (3) suy ra \(OB = OC = OE = \frac{1}{2}BC\).
Do đó, ba điểm B, C, E cùng nằm trên đường tròn tâm O bán kính OB.
Do đó, bốn điểm B, C, E, D cùng nằm trên một đường tròn tâm O bán kính OB.
b) Xét đường tròn tâm O bán kính OB có đường kính BC.
Ta có DE là một dây cung không đi qua tâm O nên BC > DE do trong một đường tròn dây cung lớn nhất là đường kính.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |