Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.
a) Chứng minh rằng tứ giác AHBP là hình vuông.
b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.
c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.
d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có P là điểm đối xứng với H qua M (giả thiết).
Suy ra M là trung điểm của PH.
Mà M cũng là trung điểm của AB (giả thiết).
Do đó tứ giác AHBP là hình bình hành (1)
\(\Delta \)ABH có: AH \( \bot \) BH và \(\widehat {ABH} = 45^\circ \).
Suy ra \(\Delta \)ABH vuông cân tại H.
Do đó AH = BH và \(\widehat {AHB} = 90^\circ \) (2)
Từ (1), (2) suy ra tứ giác AHBP là hình vuông.
b) \(\Delta \)ABK vuông tại K có KM là đường trung tuyến.
Suy ra MK = \(\frac{1}{2}\)AB.
Mà AB = HP (do AHBP là hình vuông).
Do đó MK = \(\frac{1}{2}\)HP.
Vậy HP = 2MK.
c) Ta có DQ // BC (giả thiết) và DH \( \bot \) BC (do AH là đường cao của \(\Delta \)ABC).
Suy ra DQ \( \bot \) DH hay \(\widehat {HDQ} = 90^\circ \) (3)
Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \) (4)
Mà \(\widehat {DHC} = 90^\circ \) (do AH là đường cao của \(\Delta \)ABC) (5)
Từ (3), (4), (5) suy ra tứ giác DHCQ là hình chữ nhật.
Gọi F là giao điểm của CD và HQ.
Suy ra F là trung điểm của CD và HQ.
Do đó FD = FC = FQ = FH.
Ta có \(\Delta \)DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.
Khi đó \(\Delta \)HKQ vuông tại K.
Vì vậy HK \( \bot \) KQ.
Chứng minh tương tự, ta được HK ⊥ PK.
Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).
Vậy ba điểm P, K, Q thẳng hàng.
d) Gọi E là giao điểm của CD và AB.
Xét ∆ABC có BK, AH là hai đường cao cắt nhau tại D.
Suy ra D là trực tâm của \(\Delta \)ABC.
Khi đó CD ⊥ AB tại E.
\(\Delta \)BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \)
Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \)
Khi đó CD là tia phân giác của \(\widehat {HCQ}\).
Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).
Vì vậy HCQD là hình vuông.
Xét tứ giác MHFE có:
• \(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông);
• \(\widehat {MEF} = 90^\circ \) (FE ⊥ AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).
Suy ra tứ giác MHFE là hình chữ nhật.
Khi đó EF = MH = \(\frac{1}{2}\)HP và EF // MH.
\(\Delta \)PHQ, có: EF // PH và F là trung điểm của HQ.
Suy ra EF đi qua trung điểm của cạnh PQ.
Mà EF = MH = \(\frac{1}{2}\)HP (chứng minh trên).
Suy ra E là trung điểm của PQ.
Khi đó ba điểm P, E, Q thẳng hàng.
Vậy các đường thẳng CD, AB và PQ đồng quy tại E.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |