Gọi S là tập hợp giá trị của m sao cho 10m Î ℤ và phương trình \(2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = {\log _{\sqrt {mx - 5} }}\left( {{x^2} + 2x - 6} \right)\) có nghiệm duy nhất. Tìm số phần tử của S.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: 2x2 − 5x + 4 > 0 với mọi x nên phương trình:
\(2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = {\log _{\sqrt {mx - 5} }}\left( {{x^2} + 2x - 6} \right)\)
\( \Leftrightarrow 2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = 2{\log _{mx - 5}}\left( {{x^2} + 2x - 6} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}mx - 5 > 0\\mx - 5 \ne 1\\{x^2} + 2x - 6 > 0\\2{x^2} - 5x + 4 = {x^2} + 2x - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\{x^2} + 2x - 6 > 0\\{x^2} - 7x + 10 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\{x^2} + 2x - 6 > 0\\\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\end{array} \right.\)
Phương trình có nghiệm duy nhất tương đương với ta nhận nghiệm x = 2 và loại x = 5 hoặc nhận nghiệm x = 5 và loại x = 2.
+ Trường hợp 1: Nhận nghiệm x = 2 và loại x = 5
Điều này tương đương với \(\left\{ \begin{array}{l}2m > 5\\2m \ne 6\\\left[ \begin{array}{l}5m \le 5\\5m = 6\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{5}{2}\\m \ne 3\\\left[ \begin{array}{l}m \le 1\\m = \frac{6}{5}\end{array} \right.\end{array} \right.\) (vô lí)
+ Trường hợp 2: Nhận nghiệm x = 5 và loại x = 2
Điều này tương đương với \(\left\{ \begin{array}{l}5m > 5\\5m \ne 6\\\left[ \begin{array}{l}2m \le 5\\2m = 6\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\m \ne \frac{6}{5}\\\left[ \begin{array}{l}m \le \frac{5}{2}\\m = 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 3\\\left\{ \begin{array}{l}1 < m \le \frac{5}{2}\\m \ne \frac{6}{5}\end{array} \right.\end{array} \right.\)
Suy ra: \(\left[ \begin{array}{l}10m = 30\\\left\{ \begin{array}{l}10 < 10m \le 25\\m \ne 12\end{array} \right.\end{array} \right.\)
Vì 10m Î ℤ nên 10m Î {11; 13; 14; …; 25} È {30}
Trong tập hợp này có 15 phần tử nên tập hợp S cũng có 15 phần tử.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |