Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
log2 x + logx − m = 0
Û log2 x + logx = m (*)
Đặt t = log x nên với x Î (0; 1) thì t Î (−∞; 0)
Khi đó phương trình (*) trở thành t2 + t = m
Xét hàm số f (t) = t2 + t trên khoảng (−∞; 0) ta có:
f ¢(t) = 2t + 1 = 0 \( \Leftrightarrow t = - \frac{1}{2}\)
Bảng biến thiên:
Dựa vào bảng biến thiên, để phương trình có 2 nghiệm phân biệt trên khoảng (−∞; 0) thì:
\( - \frac{1}{4} < m < 0\)
Vậy \(m \in \left( { - \frac{1}{4};\;0} \right)\) là giá trị của m thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |