Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Có \(A_9^4\) cách tạo ra số có 4 chữ số phân biệt từ X = {1; 2; 3; 4; 5; 6; 7; 8; 9}
Do đó S có \(A_9^4 = 3024\) phần tử.
Chọn một số từ tập S nên n (Ω) = 3024.
Gọi biến cố A: "Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn”.
Nhận thấy không thể có 3 chữ số chẵn hoặc 4 chữ số chẵn vì lúc đó luôn tồn tại hai chữ số chẵn nằm cạnh nhau.
+) Trường hợp 1: Cả 4 chữ số đều lẻ.
Chọn 4 số lẻ từ X và xếp thứ tự có \(A_5^4 = 120\) (số).
+) Trường hợp 2: Có 3 chữ số lẻ, 1 chữ số chẵn.
Chọn 3 chữ số lẻ, 1 chữ số chẵn từ X và xếp thứ tự có \(C_5^3\,.\,C_4^1\,.\,4! = 960\) (số).
+) Trường hợp 3: Có 2 chữ số chẵn, 2 chữ số lẻ.
Có các cách sắp xếp như sau: CLCL; LCLC; CLLC
Với cách sắp xếp CLCL thì có 4.5.3.4 = 240 (số).
Tương tự với hai cách sắp xếp còn lại nên trường hợp này có 3.240 = 720 (số).
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |