Cho hệ ba phương trình bậc nhất ba ẩn sau
a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3.
a) Giả sử (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình trên. Chứng minh rằng x0+x12;y0+y12;z0+z12 cũng là một nghiệm của hệ.
b) Sử dụng kết quả của câu a) chứng minh rằng, nếu hệ phương trình bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình nên:
a1x0+b1y0+c1z0=d1a2x0+b2y0+c2z0=d2a3x0+b3y0+c3z0=d3 và a1x1+b1y1+c1z1=d1a2x1+b2y1+c2z1=d2a3x1+b3y1+c3z1=d3
⇒a1x0+b1y0+c1z0+a1x1+b1y1+c1z1=2d1a2x0+b2y0+c2z0+a2x1+b2y1+c2z1=2d2a3x0+b3y0+c3z0+a3x1+b3y1+c3z1=2d3
⇒a1x0+x1+b1y0+y1+c1z0+z1=2d1a2x0+x1+b2y0+y1+c2z0+z1=2d2a3x0+x1+b3y0+y1+c3z0+z1=2d3
⇒a1x0+x12+b1y0+y12+c1z0+z12=d1a2x0+x12+b2y0+y12+c2z0+z12=d2a3x0+x12+b3y0+y12+c3z0+z12=d3
Mặt khác do (x0; y0; z0) và (x1; y1; z1) phân biệt nên x0+x12;y0+y12;z0+z12 cũng đôi một phân biệt với (x0; y0; z0) và (x1; y1; z1).
Do đó x0+x12;y0+y12;z0+z12 cũng là một nghiệm của hệ.
b) Xét hệ phương trình bậc nhất ba ẩn a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3.
có (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình này.
Giả sử hệ chỉ có n nghiệm đôi một phân biệt (x0; y0; z0), (x1; y1; z1), ..., (xn; yn; zn).
Ta chọn ra hai nghiệm (xi; yi; zi) và (xj; yj; zj) thoả mãn xi và xj là hai số nhỏ nhất trong tập hợp A = {x0; x1; ...; xn}.
Khi đó, áp dụng câu a) ta được xi+xj2;yi+yj2;zi+zj2 cũng là một nghiệm của hệ.
Mặt khác xi+xj2 khác xi, xj và xi+xj2< max{xi, xj} nên xi+xj2 không trùng với phần tử nào trong tập hợp A. Do đó hệ đã cho có n + 1 nghiệm phân biệt (vô lí).
Vậy hệ này có vô số nghiệm.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |