Bài tập  /  Bài đang cần trả lời

Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r. a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H). b) Viết phương trình chính tắc và tìm tâm sai của (H).

Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r.

a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

1 Xem trả lời
Hỏi chi tiết
15
0
0
Nguyễn Thu Hiền
13/09/2024 17:33:17

Hướng dẫn giải

a) Gọi (C'; r') là đường tròn đi qua F2 và tiếp xúc với (C);

I(x; y) là tâm của đường tròn đi qua F2 và tiếp xúc với (C).

Vì F2 nằm ngoài (C) nên (C') tiếp xúc ngoài với (C) hoặc (C') tiếp xúc trong với (C) và (C) nằm trong (C').

+) Nếu (C') tiếp xúc ngoài với (C) thì r' + r = IF1 => IF2 + r = IF1 => IF1 – IF2 = r

+) Nếu (C') tiếp xúc trong với (C) và (C) nằm trong (C') thì r' – r = IF1 => IF2 – r = IF1

=> IF2 – IF1 = r.

Vậy ta luôn có |IF2 – IF1| = r trong cả hai trường hợp

=> I nằm trên hypebol có hai tiêu điểm là F1, F2 và độ dài trục thực là r.

b) Chọn hệ trục toạ độ sao cho gốc toạ độ trùng với trung điểm của F1F2 và F1, F2 đều nằm trên trục Ox.

Giả sử phương trình chính tắc của hypebol này là x2a2−y2b2=1 (a > 0, b > 0).

Khi đó ta có 2a = r, suy ra a = r/2

F1F2 = 4r, suy ra c = 2r, suy ra b2=c2−a2=(2r)2−(r2)2=15r24.

Vậy phương trình chính tắc của hypebol này là x2r24−y215r24=1.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×