Giải các phương trình sau:
1) \[\cos 2x = 3\sin x + 1\]. 2) \[\cos 3x + \cos x - \cos 2x = 0\].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp
1) Sử dụng công thức nhân đôi đưa phương trình về phương trình bậc hai với ẩn \[\cos x\].
2) Sử dụng công thức cộng \[\cos a + \cos b = 2\cos \frac{2}\cos \frac{2}\] và biến đổi phương trình về dạng tích.
Cách giải
1.
Vậy phương trình có nghiệm \[x = k\pi ,k \in \mathbb{Z}\].
2.
\[\begin{array}{l}\cos 3x + \cos x - \cos 2x = 0\\ \Leftrightarrow 2\cos 2x\cos x - \cos 2x = 0 \Leftrightarrow \cos 2x\left( {2\cos x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\2\cos x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\\cos x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} + k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\end{array}\]
Vậy phương trình có nghiệm \[x = \frac{\pi }{4} + \frac{{k\pi }}{2},x = \pm \frac{\pi }{3} + k2\pi \].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |