Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
• Xét tam giác ABD có là góc tù.
Nên BA < BD (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (1)
• Vì BDE^ là góc ngoài của tam giác ADB tại đỉnh D nên BDE^=A^+ABD^ .
Mà A^ là góc tù.
Do đó BDE^ là góc tù.
Xét tam giác EBD có BDE^ là góc tù .
Nên BD < BE (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (2)
• Vì BEC^ là góc ngoài của tam giác AEB tại đỉnh E nên BEC^=A^+ABE^
Mà A^ là góc tù.
Do đó BEC^ là góc tù.
Xét tam giác EBC có BEC^ là góc tù.
Nên BE < BC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (3)
Từ (1), (2) và (3) suy ra BA < BD < BE < BC.
Vậy BA < BD < BE < BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |