Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC.

Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC.

1 Xem trả lời
Hỏi chi tiết
12
0
0
Đặng Bảo Trâm
13/09/2024 17:38:49

• Xét tam giác ABD có là góc tù.

Nên BA < BD (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (1)

• Vì BDE^  là góc ngoài của tam giác ADB tại đỉnh D nên BDE^=A^+ABD^ .

Mà A^ là góc tù.

Do đó BDE^  là góc tù.

Xét tam giác EBD có BDE^ là góc tù .

Nên BD < BE (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (2)

• Vì BEC^  là góc ngoài của tam giác AEB tại đỉnh E nên BEC^=A^+ABE^

Mà A^ là góc tù.

Do đó BEC^  là góc tù.

Xét tam giác EBC có BEC^ là góc tù.

Nên BE < BC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (3)

Từ (1), (2) và (3) suy ra BA < BD < BE < BC.

Vậy BA < BD < BE < BC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×