Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp:
1. Chứng minh đường thẳng MN song song với 1 đường thẳng nằm trong mặt phẳng \(\left( {SCD} \right).\)
2. Hai mặt phẳng chứa 2 đường thẳng song song thì cắt nhau theo giao tuyến (nếu có) song song với 2 đường thẳng đó.
3. Áp dụng định lí Menelaus trong tam giác SAC: \(\frac.\frac.\frac = 1.\)
Cách giải:
a. Xét tam giác SAB có MN là đường trung bình \( \Rightarrow MN//AB\) (Tính chất đường trung bình).
Lại có \(AB//CD\) (ABCD là hình bình hành) nên \(MN//CD,\) \(CD \subset \left( {SCD} \right) \Rightarrow MN//\left( {SCD} \right).\)
b. Ta có \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm P chung.
\(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN//AB \Rightarrow \) Giao tuyến của 2 mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua P và song song với MN, AB.
Trong \(\left( {ABCD} \right)\) kẻ \(EF//AB\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)
c. Gọi \(O = AC \cap BD.\) Do P là trọng tâm tam giác BCD
\( \Rightarrow \frac = \frac{2}{3} \Rightarrow \frac{{\frac{1}{2}AC}} = \frac{2}{3} \Leftrightarrow \frac = \frac{1}{3} \Rightarrow \frac = \frac{1}{2}\)
Áp dụng định lí Menelaus trong tam giác SAC: \(\frac.\frac.\frac = 1 \Rightarrow 1.2.\frac = 1 \Leftrightarrow \frac = \frac{1}{2} \Rightarrow \frac = \frac{1}{2}.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |