Các học sinh của một lớp học gồm 45 nam và 35 nữ được xếp ra thành một hàng ngang. Chứng minh rằng trong hàng đó luôn tìm được hai học sinh nam mà ở giữa họ có 8 người đứng xen vào.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lớp học đó có tất cả 45 + 35 = 80 học sinh.
Đánh số thứ tự các học sinh từ 1 đến 80.
Xét các học sinh có thứ tự là i và i + 9, với 1 ≤ i ≤ 71.
Ta thấy giữa hai học sinh này luôn có đúng 8 học sinh khác.
– Xét 18 học sinh đầu có số thứ tự từ 1 đến 9 và 10 đến 18; 18 học sinh này chia làm 9 cặp.
– Xét 54 học sinh tiếp theo chia làm 3 nhóm, mỗi nhóm 18 học sinh, mỗi nhóm 18 học sinh này chia làm 9 cặp.
– Khi đó 72 học sinh đầu tiên chia làm 9 + 3.9 = 36 cặp, vậy 8 học sinh cuối ghép thành 8 cặp.
Lúc này ta có các cặp học sinh được đánh số thứ tự như sau:
⦁ (1; 10), (2; 11), ..., (9; 18).
⦁ (19; 28), (20; 29), ..., (27; 36).
⦁ (37; 46), (38; 47), ..., (45; 54).
⦁ (55; 64), (56; 65), ..., (63; 72).
⦁ (64; 73), (65; 74), ..., (71; 80).
Ta thấy có 44 cặp, mỗi cặp 2 học sinh.
Mà lớp học có 45 học sinh nam nên tồn tại ít nhất hai học sinh nam mà ở giữa họ có 8 người đứng xen vào.
Vậy ta có điều phải chứng minh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |