Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF là các tứ giác nội tiếp

Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF cắt nhau tại H.

a) Chứng minh các tứ giác BCEF, AEHF là các tứ giác nội tiếp

1 Xem trả lời
Hỏi chi tiết
15
0
0
Nguyễn Thị Nhài
13/09/2024 17:55:40

a) Ta có: BEC^=900, BFC^=900  (Vì BE, CF là đường cao của tam giác ABC)

Vậy tứ giác BCEF nội tiếp được đường tròn đường kính BC

    Ta có: AEH^=900, AFH^=900 (Vì BE, CF là đường cao của tam giác ABC)

Vậy tứ giác AEHF nội tiếp được đường tròn đường kính AH

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×