Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O) sao cho C nằm giữa M và D. Gọi I là trung điểm của CD. Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh: A, B, K thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
MA là tiếp tuyến của đường tròn (O)
\[\widehat {MAC} = \widehat {MDA}\](góc tạo bởi tiếp tuyến và dây cùng và góc nội tiếp cùng chắn cung AC)
Xét △MAC và △MDA:
\[\widehat {MAC} = \widehat {MDA}\]
\[\widehat M\] chung
Do đó △MAC ᔕ △MDA (g.g)
Suy ra \[\frac = \frac\]hay MA2 = MC.MD
Xét ∆AMO vuông tại A có AH ^ OM nên ta có:
Þ MH. MO = MA2 (hệ thức lượng trong tam giác)
Þ MH. MO = MC.MD
Mà \[\frac = \frac\]
Þ △MHC ᔕ △MDC (c.g.c)
\[ \Rightarrow \widehat {MHC} = \widehat {MDO}\]
Þ Tứ giác HCDO nội tiếp đường tròn
Ta có: KC và KD là hai tiếp tuyến cắt nhau tại K của đường tròn (O)
\[ \Rightarrow \widehat {KDO} = \widehat {KCO} = 90^\circ \]
\[ \Rightarrow \widehat {KDO} + \widehat {KCO} = 180^\circ \]
Þ Tứ giác KCOD nội tiếp đường tròn
Mà tứ giác HODC nội tiếp đường tròn
Þ 5 điểm K, C, H, O, D cùng thuộc một đường tròn
Þ HK là phân giác của \[\widehat {CHD}\] (do KC = KD)
Vậy 3 điểm A, B, K thẳng hàng.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |