Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh:
a) \[\Delta ABC = \Delta ADE\].
b) DE = BC và DE // BC.
c) \[\Delta AEN = \Delta ACM\].
d) M, A, N thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔABC và ΔADE có:
AB = AD
\(\widehat {BAC} = \widehat {DAE}\) (hai góc đối đỉnh)
AC = AE
Do đó \[\Delta ABC = \Delta ADE\left( {c.g.c} \right)\] (đpcm)
b) Vì \[\Delta ABC = \Delta ADE\] (cmt)
⇒ BC = DE (hai cạnh tương ứng), \[\widehat {ACB} = \widehat {AED}\](hai góc tương ứng).
Mặt khác \(\widehat {ACB},\widehat {AED}\) là hai góc ở vị trí so le trong.
⇒ DE // BC
Vậy DE = BC và DE song song với BC.
c) Ta có: \(EN = \frac{2};MC = \frac{2};DE = BC\) nên EN = MC
Xét \[\Delta AEN\] và \(\Delta ACM\) có:
AE = AC
\(\widehat {NEA} = \widehat {MCA}\) (do \(\widehat {AED} = \widehat {ACB}\))
EN = CM (cmt)
⇒ \[\Delta AEN = \Delta ACM\left( {c.g.c} \right)\] (đpcm)
d) Do \[\Delta AEN = \Delta ACM\] (cmt)
⇒ \(\widehat {NAE} = \widehat {MAC}\) (hai góc tương ứng)
Ta có: \(\widehat {NAM} = \widehat {NAE} + \widehat {EAM} = \widehat {MAC} + \widehat {EAM}\)
mà \(\widehat {MAC} + \widehat {EAM} = \widehat {EAC} = {180^o}\) (hai góc kề bù)
Do đó \(\widehat {NAM} = {180^o}\)
Vậy ba điểm M, A, N thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |