Cho tam giác ABC vuông tại A.
a) Giả sử \(\widehat B = 54^\circ .\) Tính góc C.
b) Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MA = MN. Chứng minh AB // NC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì tam giác ABC vuông tại A ⇒ \(\widehat {BAC} = 90^\circ .\)
Xét tam giác ABC có:
\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \)
⇔ \(\widehat {ACB} = 180^\circ - 54^\circ - 90^\circ = 36^\circ \)
b) Xét \(\Delta ABM\) và \(\Delta NCM\) có:
AM = MN
MB = MC (do M là trung điểm BC)
\(\widehat {NMC} = \widehat {AMB}\) (đối đỉnh)
Do đó \(\Delta ABM = \Delta NCM\left( {c.g.c} \right)\)
Suy ra \(\widehat {ABM} = \widehat {NCM}\) (2 góc tương ứng)
Vậy AB // NC (do 2 góc so le trong) (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |