Bài tập  /  Bài đang cần trả lời

Cho △ABC nhọn các đường cao AD và BE cắt tại H. Gọi M là trung điểm BC. P đối xứng với H qua BC, Q đối xứng với H qua M. a) PQ // BC. Tứ giác DMQP là hình gì? b) Chứng minh rằng: HCQB là hình bình hành.

Cho △ABC nhọn các đường cao AD và BE cắt tại H. Gọi M là trung điểm BC. P đối xứng với H qua BC, Q đối xứng với H qua M.

a) PQ // BC. Tứ giác DMQP là hình gì?

b) Chứng minh rằng: HCQB là hình bình hành.

1 Xem trả lời
Hỏi chi tiết
14
0
0
Nguyễn Thị Thảo Vân
13/09/2024 22:59:41

a) Vì H đối xứng với P qua BC nên BC là đường trung trực của HP, hay HP⊥BC tại trung điểm của HP.

Suy ra D là trung điểm của HP nên \(\frac = 1\)            (1)

Mặt khác: H đối xứng với Q qua M nên M là trung điểm của HQ nên \(\frac = 1\)     (2)

Từ (1) và (2) suy ra \(\frac = \frac\)

Theo định lý Talet đảo thì DM // PQ hay BC // PQ (đpcm)

Tứ giác DMQP có DM // PQ và \(\widehat D = 90^\circ \) do HP⊥BC tại D

Do đó tứ giác DMQP là hình thang vuông.

b) Tứ giác HCQB có hai đường chéo BC, HQ cắt nhau tại trung điểm M của mỗi đường nên suy ra HCQB là hình bình hành (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×