Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.
a) Chứng minh \(\frac = \frac\).
b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.
c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Áp dụng định lí Pytago vào tam giác ABD vuông tại A, ta có:
\(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
T a có: \(\frac = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\)
Mà \(\frac = \frac{{a\sqrt 2 }} = \frac{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\).
Suy ra \(\frac = \frac\).
b) Xét tam giác BDE và tam giác CDB có:
\(\frac = \frac\)
\(\widehat {BDE}\) chung
Do đó ∆BDE ᔕ ∆CDB (c.g.c)
c) Cách 1: Xét tam giác ABD vuông tại A
Có AB = AD = a
Do đó, tam giác ABD vuông cân tại A
\[ \Rightarrow \widehat {BDA} = \widehat {ABD} = 45^\circ \]
Do ∆BDE ᔕ ∆CDB \( \Rightarrow \widehat {BED} = \widehat {CBD}\)
Mặt khác: \(\widehat {AEB} + \widehat {BCD} = \widehat {BED} + \widehat {BCD} = \widehat {CBD} + \widehat {BCD}\;\,\,\left( 3 \right)\)
Xét tam giác BCD có:
\(\widehat {ADB} = \widehat {CBD} + \widehat {BCD} = \widehat {ADB} = 45^\circ \,\,\;\left( 4 \right)\) (Tính chất góc ngoài)
Từ (3) và (4) ta suy ra \(\widehat {AEB} + \widehat {BCD} = 45^\circ \).
Cách 2: Ta có: AE = AD + DE = 2a.
Xét tam giác ABE vuông tại A
Ta có: \(\tan \widehat {AEB} = \frac = \frac{a} = \frac{1}{2} \Rightarrow \widehat {AEB} \approx 26^\circ 34'\).
Xét tam giác ABC vuông tại A
Ta có: \(\tan \widehat {ACB} = \frac = \frac{a} = \frac{1}{3} \Rightarrow \widehat {ACB} \approx 18^\circ 26'\).
Suy ra \(\widehat {AEB} + \widehat {ACB} = 26^\circ 34' + 18^\circ 26' = 45^\circ \).
Vậy \(\widehat {AEB} + \widehat {BCD} = \widehat {AEB} + \widehat {ACB} = 45^\circ \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |