LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC. a) Chứng minh \(\frac = \frac\). b) Chứng minh tam giác BDE đồng dạng với tam giác CDB. c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.

Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.

a) Chứng minh \(\frac = \frac\).

b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.

c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.

1 trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Phú
13/09 23:06:32

Áp dụng định lí Pytago vào tam giác ABD vuông tại A, ta có:

\(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

T a có: \(\frac = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\)

Mà \(\frac = \frac{{a\sqrt 2 }} = \frac{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\).

Suy ra \(\frac = \frac\).

b) Xét tam giác BDE và tam giác CDB có:

\(\frac = \frac\)

\(\widehat {BDE}\) chung

Do đó ∆BDE ᔕ ∆CDB (c.g.c)

c) Cách 1: Xét tam giác ABD vuông tại A

Có AB = AD = a

Do đó, tam giác ABD vuông cân tại A

\[ \Rightarrow \widehat {BDA} = \widehat {ABD} = 45^\circ \]

Do ∆BDE ᔕ ∆CDB \( \Rightarrow \widehat {BED} = \widehat {CBD}\)

Mặt khác: \(\widehat {AEB} + \widehat {BCD} = \widehat {BED} + \widehat {BCD} = \widehat {CBD} + \widehat {BCD}\;\,\,\left( 3 \right)\)

Xét tam giác BCD có:

\(\widehat {ADB} = \widehat {CBD} + \widehat {BCD} = \widehat {ADB} = 45^\circ \,\,\;\left( 4 \right)\) (Tính chất góc ngoài)

Từ (3) và (4) ta suy ra \(\widehat {AEB} + \widehat {BCD} = 45^\circ \).

Cách 2: Ta có: AE = AD + DE = 2a.

Xét tam giác ABE vuông tại A

Ta có: \(\tan \widehat {AEB} = \frac = \frac{a} = \frac{1}{2} \Rightarrow \widehat {AEB} \approx 26^\circ 34'\).

Xét tam giác ABC vuông tại A

Ta có: \(\tan \widehat {ACB} = \frac = \frac{a} = \frac{1}{3} \Rightarrow \widehat {ACB} \approx 18^\circ 26'\).

Suy ra \(\widehat {AEB} + \widehat {ACB} = 26^\circ 34' + 18^\circ 26' = 45^\circ \).

Vậy \(\widehat {AEB} + \widehat {BCD} = \widehat {AEB} + \widehat {ACB} = 45^\circ \).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư