Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:
a) ∆ANP ᔕ ∆HBA và ∆MCN ᔕ ∆MPB;
b) \(\frac \cdot \frac \cdot \frac = 1\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).
Mà \(\widehat {BAC} + \widehat {PAN} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {PAN} = 90^\circ \).
Vì MN vuông góc với BC, AH vuông góc với BC nên MN song song với AH hay MP song song với AH.
Do đó, \(\widehat P = \widehat {HAB}\) (hai góc đồng vị).
Tam giác ANP vuông tại A và tam giác HBA vuông tại H có:
\(\widehat P = \widehat {HAB}\) (cmt)
Do đó, ∆ANP ᔕ ∆HBA (hai góc nhọn bằng nhau).
Tam giác MCN vuông tại M và tam giác MPB vuông tại M có:
\(\widehat C = \widehat P\) (cùng phụ với góc B).
Do đó, ∆MCN ᔕ ∆MPB (hai góc nhọn bằng nhau).
b)
Ta có: \(\frac \cdot \frac \cdot \frac = \frac \cdot \frac \cdot \frac\).
Tam giác PMB có: PM song song với AH nên theo định lí Thalès ta có:
\(\frac = \frac\) hay \(\frac = \frac\).
Tam giác AHC có: MN song song với AH nên theo định lí Thales ta có:
\(\frac = \frac\).
Do đó, \(\frac \cdot \frac \cdot \frac = \frac \cdot \frac \cdot \frac\)\( = \frac \cdot \frac \cdot \frac = 1\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |