Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh:
a) ∆DEB = ∆DFC;
b) ∆AED = ∆AFD;
c) AD là tia phân giác của \(\widehat {BAC}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì AB = AC nên tam giác ABC cân tại A, suy ra \(\widehat B = \widehat C\)
Xét ∆DEB và ∆DFC có:
\(\widehat {BE{\rm{D}}} = \widehat {CF{\rm{D}}}\left( { = 90^\circ } \right)\);
BD = CD;
\(\widehat B = \widehat C\) (chứng minh trên)
Suy ra ∆DEB = ∆DFC (cạnh huyền – góc nhọn).
b) Vì ∆DEB = ∆DFC (chứng minh câu a)
Nên DE = DF (hai cạnh tương ứng)
Xét ∆AED và ∆AFD có:
\(\widehat {AE{\rm{D}}} = \widehat {AF{\rm{D}}}\left( { = 90^\circ } \right)\);
AD là cạnh chung;
DE = DF (chứng minh trên)
Suy ra ∆AED = ∆AFD (cạnh huyền – cạnh góc vuông)
c) Vì ∆AED = ∆AFD (chứng minh câu b)
Nên \(\widehat {DA{\rm{E}}} = \widehat {DAF}\) (hai góc tương ứng)
Suy ra AD là tia phân giác của \(\widehat {BAC}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |