Bài tập  /  Bài đang cần trả lời

Cho \[\Delta ABC\]đều, đường cao AH. Lấy M nằm giữa B, C. Kẻ \[{\rm{MP }} \bot {\rm{ AB}}\]tại P ; \[{\rm{MQ }} \bot {\rm{AC}}\] tại Q. Gọi O là trung điểm AM. Chứng minh OHPQ là hình thoi. Tìm vị trí của M trên BC để PQ ngắn nhất.

Cho \[\Delta ABC\]đều, đường cao AH. Lấy M nằm giữa B, C. Kẻ \[{\rm{MP }} \bot {\rm{ AB}}\]tại P ; \[{\rm{MQ }} \bot {\rm{AC}}\] tại Q. Gọi O là trung điểm AM. Chứng minh OHPQ là hình thoi. Tìm vị trí của M trên BC để PQ ngắn nhất.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Trần Đan Phương
13/09/2024 23:09:49

Xét \(\Delta APM\)vuông tại P ta có PO là đường trung tuyến ứng với cạnh huyền AM.

→ OA = OP = OM.

Tương tự cho \[\Delta AHM\]vuông tại H và \(\Delta AQM\)vuông tại Q ta có:

OA = OP = OH = OM = OQ    (1)

→ \(\Delta AOP\)và \[\Delta AOH\]cân tại O.

Xét \(\Delta ABC\)đều ta có:

AH là đường cao cũng là đường phân giác 

\[ \Rightarrow \widehat {{\rm{BAH}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\widehat {{\rm{BAC}}}{\rm{ = 3}}{{\rm{0}}^{\rm{0}}}\]

Ta có:

\[\widehat {{\rm{POM}}}{\rm{ = 2 }}\widehat {{\rm{PAO}}}\] ( góc ngoài của \(\Delta AOP\)cân tại O)

\[\widehat {{\rm{HOM}}}{\rm{\; = 2}}\widehat {{\rm{HAO}}}\] ( góc ngoài của \(\Delta AOH\)cân tại O)

\[ \Rightarrow {\rm{ }}\widehat {{\rm{POM}}}{\rm{ - }}\widehat {{\rm{HOM}}}{\rm{ = 2}}\left( {{\rm{ }}\widehat {{\rm{PAO}}}{\rm{ -   }}\widehat {{\rm{HAO}}}} \right)\]

\[ \Rightarrow {\rm{ }}\widehat {{\rm{POH}}}{\rm{ = 2}}\widehat {{\rm{PAH}}}\]

Mà\[{\rm{ }}\widehat {{\rm{PAH}}}{\rm{ = 3}}{{\rm{0}}^{\rm{0}}}\]( cmt)  

Nên \[\widehat {{\rm{POH}}}{\rm{ = 6}}{{\rm{0}}^{\rm{0}}}\]

Mặt khác OH = OP ( cmt)

\[ \Rightarrow {\rm{ \Delta POH}}\]đều.

→ PH = OP    (2)

Tương tự ta có \[\Delta QOH\]đều 

→ QH = OQ    (3)

Từ (1), (2), (3) suy ra OP = OQ = PH = HQ

→ Tứ giác OPHQ là hình thoi ( tứ giác có 4 cạnh bằng nhau)

 Gọi K là giao điểm của OH và PQ.

Do tứ giác OPHQ là hình thoi và K là giao điểm 2 đường chéo OH và PQ

Nên K là trung điểm của OH và PQ và \[{\rm{OH }} \bot {\rm{ PQ}}\]tại K.

\[ \Rightarrow {\rm{ OK = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{OH = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{AM}}\].

Xét \[\Delta OKP\]vuông tại K theo định lý Pitago thuận ta có:

\[{\rm{P}}{{\rm{K}}^{\rm{2}}}{\rm{\; = O}}{{\rm{P}}^{\rm{2}}}{\rm{\; - O}}{{\rm{K}}^{\rm{2}}}{\rm{\; = }}\frac{1}{4}{\rm{ A}}{{\rm{M}}^{\rm{2}}}{\rm{\; - }}\frac{1}{\rm{ A}}{{\rm{M}}^{\rm{2}}}{\rm{\; = }}\frac{3}{\rm{ A}}{{\rm{M}}^{\rm{2}}}\]

\( \Rightarrow {\rm{PK = }}\frac{{\sqrt {\rm{3}} }}{{\rm{4}}}{\rm{AM}}\)

\( \Rightarrow {\rm{PQ = }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{AM}}\)

→ PQ nhỏ nhất khi AM nhỏ nhất.

Mà AM nhỏ nhất khi AM = AH

→ M trùng với H thì PQ nhỏ nhất.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×