LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC . a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông b) Nối EC cắt DF tại I. Chứng minh rằng OI ^ CD c) Biết diện tích hình lục giác ABFCDE = 6. Tính độ dài các cạnh của hình vuông ABCD d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC

Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC .

a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông

b) Nối EC cắt DF tại I. Chứng minh rằng OI ^ CD

c) Biết diện tích hình lục giác ABFCDE = 6. Tính độ dài các cạnh của hình vuông ABCD

d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC

1 trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Bắc
13/09 23:11:07

a) Gọi giao điểm của AD và EO là T

Giao điểm của BC và OF là H

Xét tứ giác EAOD có

\(\left. \begin{array}{l}AT = TD\\ET = TO\end{array} \right\} \Rightarrow EAOD\) là hình bình hành (dấu hiệu nhận biết).

Mà AD ^ EO nên tứ giác EAOD là hình thoi.

Hình thoi EAOD có \[\widehat {AOD} = 90^\circ \] nên là hình vuông.

Vậy EAOD là hình vuông theo dấu hiệu nhận biết hình thoi có 1 góc vuông.

Chứng minh tương tự với tứ giác OBFC.

b) Xét 2 tam giác ECF và FDE có:

\(\widehat {CFE} = \widehat {DEF} = 45^\circ \)

EF chung

FC = DE

Þ ΔECF = ∆FDE (c.g.c)

\( \Rightarrow \widehat {FEC} = \widehat {EFD}\)

Vậy tam giác EFI cân.

Mà O là trung điểm của EF Þ OI ^ EF (trong tam giác cân đường trung tuyến cũng là đường cao)

c) Ta có: ΔAED = ∆ABO = ∆BCO = ∆COD = ∆DOA = ∆BFC

SAED + SABO + SBCO + SCOD + SDOA + SBFC = SABFCDE = 6

Þ SABO = SBCO = SCOD = SDOA = 1

Þ SABCD = SABO + SBCO + SCOD + SDOA = 4

\( \Rightarrow AB = BC = CD = AD = \sqrt 4 = 2\)

d) Gọi M là giao điểm của IO với AB, N là giao điểm của IM với AK, ta có:

IO ^ FE Þ IO ^ AB Þ OM ^ AB, mà O là trung điểm của của HT nên M là trung điểm của AB.

Xét tam giác ABK có:

MA = MB (cmt)

MN // BK (vì MO // CD)

Do đó NA = NK

Þ N là trung điểm của AK

Þ IN là đường trung tuyến của ∆AIK.

Mà G là trọng tậm tam giác nên G Î IN

Þ G Î M với IM cố định (I, M cố định).

Vậy điểm G luôn nằm trên đường thẳng cố định IM.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư