Bài tập  /  Bài đang cần trả lời

Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C. a) Chứng minh tứ giác ACED là hình bình hành. b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi. c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)

Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.

a) Chứng minh tứ giác ACED là hình bình hành.

b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.

c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)

1 Xem trả lời
Hỏi chi tiết
10
0
0
CenaZero♡
13/09 23:19:09

a) Ta có: E là điểm đối xứng với B qua C

Suy ra C là trung điểm của BE nên BC = EC

Xét tứ giác ACED ta có:

AD // EC (AD // BC)

AD = CE (= BC)

Suy ra ACED là hình bình hành.

b) Xét ∆ABM và ∆FCM ta có:

\[\widehat {ABM} = \widehat {FCM} = 90^\circ \]

MB = MC (gt)

\(\widehat {AMB} = \widehat {CMF}\) (Hai góc đối đỉnh)

Þ ∆ABM = ∆FCM (g.c.g)

Þ AB = CF (hai cạnh tương ứng)

Mà AB = DC (gt) Þ DC =F

Xét tứ giác BDEF ta có:

BE ^ DF

BE Ç DF = C

C là trung điểm của BE và DF

Þ BDEF là hình thoi

c) Gọi AC Ç BD = H; AI Ç BD = O

Ta có: ACED là hình bình hành

Mà AE Ç CD = I

Þ I là trung điểm của CD

Lại có O là trung điểm của AC

Þ H là trực tâm của ∆ACD

\( \Rightarrow \frac = \frac{1}{3}\)

Mà I là trung điểm của AE \( \Rightarrow AI = \frac{1}{2}AE \Rightarrow IH = \frac{1}{6}AE\)

Ta có: BDEF là hình thoi

Þ DF là tia phân giác của \(\widehat {BDE}\) (tính chất hình thoi)

\( \Rightarrow \widehat {BDC} = \widehat {CDE}\)

Ta có BDEF là hình thoi

Þ BD = DE (hai cạnh bên)

Xét ∆BDI và ∆EDI ta có:

DI chung

\(\widehat {IDB} = \widehat {IDE}\) (cmt)

BD = DE (cmt)

Þ ∆BDI = ∆EDI (c.g.c)

\( \Rightarrow \widehat {DBI} = \widehat {DEI}\) (hai góc tương ứng)

Và IE = IB (hai cạnh tương ứng)

Xét ∆HBI và ∆KEI ta có:

\(\widehat {HBI} = \widehat {KEI}\) (cmt)

IE = IB (cmt)

\(\widehat {HIB} = \widehat {KIE}\) (hai góc đối đỉnh)

Do đó ∆HBI = ∆KEI (g.c.g)

Suy ra HI = IK (hai cạnh tương ứng).

Vậy \(IK = \frac{1}{6}AE\) (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×