Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình
\(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\).
Ở đây, thời gian t tính bằng giây và quãng đường x tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\)
\( \Leftrightarrow t = \frac{{2\pi }} + k\frac{\pi }{5},\,\,k \in \mathbb{Z}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay \(0 \le \frac{{2\pi }} + k\frac{\pi }{5} \le 6\)
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{3\pi }}\)
Vì k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8}.
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |