Cho tam giác ABC vuông ở A và hình vuông BCDE. Chứng minh rằng:
AB + AC ≤ CE.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Áp dụng định lí Pythagore cho tam giác vuông ABC ta có: AB2 + AC2 = BC2.
Khi đó (AB + AC)2 = AB2 + AC2 + 2.AB.AC = BC2 + 2.AB.AC
Áp dụng bất đẳng thức Cosi ta có:
2.AB.AC ≤ AB2 + AC2 = BC2
⇒ (AB + AC)2 ≤ BC2 + BC2
Mà BC = BE (do BCDE là hình vuông) và BC2 + BE2 = CE2 (định lí Pythagore cho tam giác vuông BCE)
⇒ (AB + AC)2 ≤ BC2 + BE2 = CE2
⇒ AB + AC ≤ CE
Dấu “=” xảy ra khi AB = AC ⇔ ∆ABC vuông cân ở A.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |