Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HM vuông góc với AB tại M.
a) Chứng minh rằng ΔAMH ᔕ ΔAHB.
b) Kẻ HN vuông góc với AC tại N. Chứng minh rằng AM.AB = AN.AC.
c) Chứng minh rằng ΔANM ᔕ ΔABC.
d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác AMH.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Xét hai tam giác vuông AMH và AHB có: \[\widehat A\] chung
Suy ra ΔAMH ᔕ ΔAHB (g.g)
b) ΔAMH ᔕ ΔAHB nên \[\frac = \frac\;\] hay AM.AB = AH2 (1)
Xét hai tam giác vuông ANH và AHC có: \[\widehat A\] chung
Suy ra ΔANH ᔕ ΔAHC (g.g) nên \[\frac = \frac\;\] hay AN.AC = AH2 (2)
Từ (1) và (2) suy ra AM.AB = AN.AC (đpcm).
c) Ta có AM.AB = AN.AC, do đó \[\frac = \frac\].
Xét hai tam giác vuông AMN và ABC có:
\[\frac = \frac\] (chứng minh trên)
Do đó ΔANM ᔕ ΔABC (c.g.c)
d) Áp dụng định lí Pythagore vào tam giác ABC, ta có:
BC2 = AB2 + AC2 = 92 + 122 = 225.
Suy ra BC = 15 cm.
Xét hai tam giác vuông ABC và HBA có \(\widehat B\) chung
Do đó ΔABC ᔕ ΔHBA (g.g).
Suy ra \[\frac = \frac\] (các cặp cạnh tương ứng).
Khi đó AH.BC = AB.AC hay AH.15 = 9.12.
Suy ra AH = 7,2 cm.
• Từ (1): AM.AB = AH2 nên \[AM = \frac{{A{H^2}}} = \frac{{7,{2^2}}}{9} = 5,76\,\,(cm)\]
• Từ (2): AN.AC = AH2 nên \[AN = \frac{{A{H^2}}} = \frac{{7,{2^2}}} = 4,32\,\,(cm)\]
Diện tích tam giác AMN là:
\[\frac{1}{2}\,.\,5,76\,.\,4,32 = 12,4416\,\,(c{m^2})\].
Vậy diện tích tam giác AMN là 12,4416 cm2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |