Cho hình tứ diện ABCD. Trên các cạnh AC, BC, BD lần lượt lấy các điểm M, N, P sao cho AM = CM, BN = CN, BP = 2DP.
a) Xác định giao điểm của đường thẳng CD và mặt phẳng (MNP).
b) Xác định giao tuyến của hai mặt phẳng (ACD) và (MNP).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Trong tam giác BCD, N thuộc cạnh BC thỏa mãn BN = CN hay N là trung điểm của BC và P thuộc cạnh BD sao cho BP = 2DP. Khi đó, đường thẳng NP cắt CD tại một điểm E. Vì E thuộc NP nằm trong mặt phẳng (MNP) nên E thuộc mặt phẳng (MNP). Vậy E là giao điểm của đường thẳng CD và mặt phẳng (MNP).
b) Vì M thuộc cạnh AC nên M thuộc mặt phẳng (ACD), vì E thuộc CD nên E thuộc mặt phẳng (ACD), do đó đường thẳng ME nằm trong mặt phẳng (ACD).
Vì E thuộc mặt phẳng (MNP) và M thuộc mặt phẳng (MNP) nên ME nằm trong mặt phẳng (MNP).
Vậy ME là giao tuyến của hai mặt phẳng (ACD) và (MNP).Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |