Cho tứ diện ABCD có AB = CD, AC = BD, AD = BC.
a) Chứng minh đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.
b) Chứng minh hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi E, F lần lượt là trung điểm của các cạnh AD, BC.
Xét ∆BAD và ∆CDA, ta có:
BA=CDBD=CAAD chung
Do đó ∆BAD = ∆CDA (c.c.c)
Ta có BE = CE (2 đường trung tuyến ứng với cạnh AD).
Suy ra ∆BEC cân tại E nên EF ⊥ BC.
Chứng minh tương tự, ta có: EF ⊥ AD.
Vậy đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.
b) Gọi G, H lần lượt là các trung điểm của 2 cạnh AB và CD.
Theo tính chất đường trung bình, ta có:
EH=GF=12ACEG=HF=12BDAC = BD gtÞ EH = GF = EG = HF
Khi đó, EHFG là hình thoi, suy ra EF ^ GH.
Vậy hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |