Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a3 . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Gọi (a) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD). a) Tìm các giao tuyến của mặt phẳng (a) với các mặt của hình chóp. b) Các giao tuyến ở câu a tạo thành hình gì? Tính diện tích của hình đó.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a3 . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Gọi (a) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD).

a) Tìm các giao tuyến của mặt phẳng (a) với các mặt của hình chóp.

b) Các giao tuyến ở câu a tạo thành hình gì? Tính diện tích của hình đó.

1 Xem trả lời
Hỏi chi tiết
17
0
0
CenaZero♡
13/09/2024 23:31:15

a) Ta có:

(SAB) ^ (ABCD);

(SAD) ^ (ABCD);         

Do đó SA ^ (ABCD).

(SAB) Ç (SAD) = SA.

Dễ dàng chứng minh được (SAD) ^ (SCD).

Vẽ AM ^ SD (M Î SD) Þ AM ^ (SCD)

Do đó (ABM) ^ (SCD) hay (ABM) là mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD).

Trong mặt phẳng (SCD) kẻ MN // CD (N Î SC).

Suy ra: MN // AB Þ MN Ì (α).

Vậy các giao tuyến của (α) với các mặt của hình chóp là AB, BN, NM, MA.

b)

Ta có: MN // AB; AB ^ AM (vì AB ^ (SAD)).

Suy ra ABNM là hình thang vuông tại A và M.

Tam giác SAD vuông tại A có AM là đường cao nên:

1AM2=1SA2+1AD2=13a2+1a2=43a2⇒AM=a32.

Vì MN // CD nên MNCD=SMSD

⇒MNCD=SA2SD⋅1SD=SA2SD2=SA2SA2+AD2=3a24a2

⇒MN=34CD=34a

 ⇒SABMN=12.AM.(MN+AB)=12.a32.34a+a=7a2316

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×