Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.
a) Tính khoảng cách từ S đến mặt phẳng (ABC).
b) Tính khoảng cách từ M đến mặt phẳng (SAG).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do S.ABC là hình chóp tam giác đều nên SG ^ (ABC) hay d(S, (ABC))=SG.
Tam giác ABC là tam giác đều cạnh 3a nên
AG=23.3a32=a3
Tam giác SAG vuông tại G nên SG=SA2−AG2=4a2−3a2=a
Vậy d(S, (ABC)) = a.
b) Vì SC Ç (SAG) = S nên d(M,(SAG))d(C,(SAG))=MSCS=12
⇒d(M,(SAG))=12d(C,(SAG))
Gọi I là trung điểm của BC.
Ta có: CB ^ AI và CB ^ SG
Þ CB ^ (SAG) và CB Ç (SAG) = I.
Do đó d(C,(SAG))=CI=12BC=3a2
Vậy d(M,(SAG))=3a4
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |