Bài tập  /  Bài đang cần trả lời

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là \(F\left( r \right) = \left\{ \begin{array}{l}\frac{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\) trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là

\(F\left( r \right) = \left\{ \begin{array}{l}\frac{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\)

trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

1 Xem trả lời
Hỏi chi tiết
14
0
0
Tô Hương Liên
13/09 23:34:37

Lời giải:

Vì M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn, do đó M, R, G đều khác 0, r là khoảng cách nên r > 0.

Ta có: \(F\left( r \right) = \left\{ \begin{array}{l}\frac{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\). Tập xác định của hàm số F(r) là (0; +∞).

+) Với r < R thì F(r) = \(\frac{{{R^3}}}\) hay F(r) = \(\frac{{{R^3}}}.r\) là hàm đa thức nên nó liên tục trên (0; R).

+) Với r > R thì F(r) = \(\frac{{{r^2}}}\) là hàm phân thức nên nó liên tục trên (R; +∞).

+) Tại r = R, ta có F(R) = \(\frac{{{R^2}}}\).

\(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ + }} \frac{{{r^2}}} = \frac{{{R^2}}}\); \(\mathop {\lim }\limits_{r \to {R^ - }} f\left( R \right) = \mathop {\lim }\limits_{r \to {R^ - }} \frac{{{R^3}}} = \frac{{{R^3}}} = \frac{{{R^2}}}\).

Do đó, \(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \frac{{{R^2}}}\) nên \(\mathop {\lim }\limits_{r \to R} F\left( r \right) = \frac{{{R^2}}} = F\left( R \right)\).

Suy ra hàm số F(r) liên tục tại r = R.

Vậy hàm số F(r) liên tục trên (0; +∞).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×